Algebra is one of the most important branches of mathematics. Below is a complete list of algebra formulas including basic identities, advanced formulas, and their alternative forms.
1. Basic Algebraic Identities
$$\begin{array}{l}\left( i \right){\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\\\quad \quad \quad \quad \; = {\left( {a - b} \right)^2} + 4ab\\\left( {ii} \right){\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\\\quad \quad \quad \quad \; = {\left( {a + b} \right)^2} - 4ab\\\left( {iii} \right){a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\\\quad \quad \quad \quad \;\; = {\left( {a - b} \right)^2} + 2ab\\\quad \quad \quad \quad \;\; = \frac{1}{2}\left\{ {{{\left( {a + b} \right)}^2} + {{\left( {a - b} \right)}^2}} \right\}\\\left( {iv} \right)2\left( {{a^2} + {b^2}} \right) = {\left( {a + b} \right)^2} + {\left( {a - b} \right)^2}\\\left( v \right){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\\\left( {vi} \right)4ab = {\left( {a + b} \right)^2} - {\left( {a - b} \right)^2}\\\left( {vii} \right)ab = {\left( {\frac{{a + b}}{2}} \right)^2} - {\left( {\frac{{a - b}}{2}} \right)^2}\end{array} $$2. Cube Identities
$$\begin{array}{l}\left( i \right){\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\\\quad \quad \quad \quad \; = {a^3} + {b^3} + 3ab\left( {a + b} \right)\\\left( {ii} \right){\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\\\quad \quad \quad \quad \; = {a^3} - {b^3} - 3ab\left( {a - b} \right)\\\left( {iii} \right){a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)\\\quad \quad \quad \quad \;\; = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\\\left( {iv} \right){a^3} - {b^3} = {\left( {a - b} \right)^3} + 3ab\left( {a - b} \right)\\\quad \quad \quad \quad \;\; = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\end{array} $$3. Special Algebraic Identities
$$\begin{array}{l}\left( i \right){(x + y + z)^2} = {x^2} + {y^2} + {z^2} + 2(xy + yz + zx)\\\left( {ii} \right){x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right)\\\quad \quad \quad \quad \quad \quad \quad \quad \;\;\; = \frac{1}{2}\left[ {\left( {x + y + z} \right)\left\{ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right\}} \right]\\\left( {iii} \right)\;{\text{If }}x + y + z = 0{\text{, then }}{x^3} + {y^3} + {z^3} = 3xyz\end{array} $$This collection of algebra formulas and their alternative forms is extremely useful for students. Memorizing these will save time in exams and make problem solving much faster.

Hi Please, do not Spam in Comments.