Complex Numbers: Definition
A complex number is expressed as \( z = a + bi \), where:
- \(a = R(z)\) → Real Part
- \(b = Im(z)\) → Imaginary Part
- \(i^2 = -1\)
- \(i^3 = -i\)
- \(i^4 = 1\)
- \(i^{4n} = 1\) where \(n=1,2,3,...\)
Basic Properties
- Conjugate: \( \overline{z} = a - bi \)
- Modulus: \( |z| = \sqrt{a^2+b^2} \)
- Product with conjugate: \( z\overline{z} = |z|^2 \)
- Argument: \(\arg z = \theta = tan^{-1}|\frac{Im}{R}|\)
Note: (1) If \(\theta \leqslant 90^{\circ} \) then \(\arg z = \theta \)
(2) If \(90^{\circ} < \theta \leqslant 180^{\circ} \) then \(\arg z = \pi - \theta \)
(3) If \(180^{\circ} < \theta \leqslant 270^{\circ} \) then \(\arg z = \pi + \theta \)
(4) If \(\theta \leqslant 360^{\circ} \) then \(\arg z = -\theta \)
Algebra of Complex Numbers
For \( z_1 = a+bi,\; z_2 = c+di \):
- Addition: \( z_1+z_2=(a+c) + i(b+d) \)
- Subtraction: \( z_1-z_2=(a-c) + i(b-d) \)
- Multiplication: \( z_1 z_2 = (ac-bd) + i(ad+bc) \)
- Division: \( \dfrac{z_1}{z_2} = \dfrac{(ac+bd) + i(bc-ad)}{c^2+d^2} \)
Polar / Trigonometric Form
\( z = r(\cos\theta + i\sin\theta) \), where \( r=|z| \) and \( \theta=\arg z \).
Exponential Form (Euler’s Formula)
\( e^{i\theta} = \cos\theta + i\sin\theta \)
Thus, \( z = re^{i\theta} \)
Multiplication & Division (Polar Form)
- \( z_1 z_2 = r_1 r_2 e^{i(\theta_1+\theta_2)} \)
- \( \dfrac{z_1}{z_2} = \dfrac{r_1}{r_2} e^{i(\theta_1-\theta_2)} \)
De Moivre’s Theorem
\( (\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta) \)
General: \( (re^{i\theta})^n = r^n e^{in\theta} \)
Complex Roots
The nth roots of \( z = re^{i\theta} \) are:
\( w_k = r^{1/n} e^{i(\theta + 2\pi k)/n},\ k=0,1,\dots,n-1 \)
Important Identities
- \( \overline{Z_1+Z_2} = \overline{Z_1} + \overline{Z_2} \)
- \( |Z_1 Z_2| = |Z_1|\,|Z_2| \)
- \( R(Z) = \dfrac{Z+\overline{Z}}{2} \)
- \( Im(Z) = \dfrac{Z-\overline{Z}}{2i} \)
- \( |\frac{Z_1}{Z_2}|=\frac{|Z_1|}{|Z_2|} \)
- \( |Z^n|=|Z|^n \)
Inequalities
- Triangle inequality: \( |z_1+z_2| \le |z_1|+|z_2| \)
- Reverse triangle inequality: \( \big||z_1|-|z_2|\big| \le |z_1-z_2| \)
Complex Logarithm & Powers
\( \log z = \ln|z| + i(\arg z + 2\pi k),\ k\in\mathbb{Z} \)
\( z^w = e^{w\log z} \)
Geometrical Interpretation
- Distance between two complex numbers: \( |z_1 - z_2| \)
- Roots of unity are equally spaced on the unit circle.
🔑 Conclusion
Complex numbers extend the real number system and provide a powerful tool in algebra, geometry, and calculus. These formulas are highly useful for Class 11–12 mathematics, engineering, and competitive exams like JEE and GATE.

Hi Please, do not Spam in Comments.